Characterization and Control of the Wettability of Conducting Polymer Thin Films
نویسندگان
چکیده
The wettability of electrochemically deposited conducting polymer films is highly dependent on several parameters including the deposition conditions, the dopant, and the roughness of the working electrode. To produce superhydrophobic surfaces, one must be able to control the micro and nanostructure of the film. In this study, a template-free method of producing superhydrophobic (water contact angle of 154°) polypyrrole films was demonstrated. The polypyrrole was doped with the low surface-energy heptadecafluorooctanesulfonic acid and had microstructures with nanometer-scale roughness. The microstructures served to increase the roughness of the film and amplify the hydrophobicity of the surface. It is also of interest to be able to dynamically adjust the wettability of a polypyrrole surface after deposition. Applications of this functionality include microfluidics, self-cleaning surfaces, liquid lenses, and smart textiles. By oxidizing or reducing a polypyrrole film, one can change the surface morphology as well as the chemical composition, and control the wettability of the surface. This study characterizes the electrochemically-induced changes in surface energy of polypyrrole. The relationship between applied voltage, charge transferred, surface roughness, and water contact angle was investigated. Upon reduction, the polypyrrole film was switched to a superhydrophilic state and the maximum change in contact angle was observed to be 154°. Surface wettability was found to be not fully reversible, with some hysteresis occurring after the first electrochemical cycle.
منابع مشابه
Synthesis and characterization of Polyvinyl Alcohol-Polypyrrole-Silver nanocomposite polymer films
The present paper describes the preparation and characterization of Polyvinyl Alcohol-Polypyrrole-Silver Nanocomposite (PVA-PPy-Ag NC) films. The prepared films were conducting, freestanding, flexible, and robust. Silver nanoparticles (Ag NPs) were synthesized from an aqueous solution of silver nitrate using trisodium citrate as a reductant. The casting solution for the films was prepared by in...
متن کاملPreparation and Characterization of Aluminum Nitride Thin Films with the Potential Application in Electro-Acoustic Devices
In this work, aluminum nitride (AlN) thin films with different thicknesses were deposited on quartz and silicon substrates using single ion beam sputtering technique. The physical and chemical properties of prepared films were investigated by different characterization technique. X-ray diffraction (XRD) spectra revealed that all of the deposited films have an amorphous str...
متن کاملNano-structural Characterization of Post-annealed ZnO Thin Films by X-ray Diffraction and Field Emission Scanning Electron Microscopy
ZnO thin films were deposited on Si(400) substrates by e-beam evaporation technique, and then post-annealed at different annealing temperatures (200-800°C). Dependence of the crystallographic structure, nano-strain, chemical composition and surface physical Morphology of these layers on annealing temperature were studied. The crystallographic structure of films was studied using X-Ray Diffracti...
متن کاملStudies on Structural and Optical Characterization of In-Zn-S Ternary Thin Films Prepared by Spray Pyrolysis
Thin films of indium doped zinc sulfide (ZnS) for different indium (In) concentrations (x=0.0 - 0.8) were deposited onto glass substrate by spray pyrolysis method at 523K temperature. Aqueous solution of zinc acetate, indium chloride and thiorea were used to deposit the In-Zn-S film. The deposited thin films were characterized by Energy dispersive X-ray (EDX), Scanning electron microscopy (SEM)...
متن کاملNano-structural Characterization of Post-annealed ZnO Thin Films by X-ray Diffraction and Field Emission Scanning Electron Microscopy
ZnO thin films were deposited on Si(400) substrates by e-beam evaporation technique, and then post-annealed at different annealing temperatures (200-800°C). Dependence of the crystallographic structure, nano-strain, chemical composition and surface physical Morphology of these layers on annealing temperature were studied. The crystallographic structure of films was studied using X-Ray Diffracti...
متن کامل